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Entanglement dynamics in one-dimensional quantum cellular automata

Gavin K. Brennen and Jamie E. Williams
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423, USA

~Received 6 June 2003; published 13 October 2003!

Several proposed schemes for the physical realization of a quantum computer consist of qubits arranged in
a cellular array. In the quantum circuit model of quantum computation, an often complex series of two-qubit
gate operations is required between arbitrarily distant pairs of lattice qubits. An alternative model of quantum
computation based on quantum cellular automata~QCA! requires only homogeneous local interactions that can
be implemented in parallel. This would be a huge simplification in an actual experiment. We find some minimal
physical requirements for the construction of unitary QCA in a one-dimensional Ising spin chain and demon-
strate optimal pulse sequences for information transport and entanglement distribution. We also introduce the
theory of nonunitary QCA and show by example that nonunitary rules can generate environment assisted
entanglement.
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I. INTRODUCTION

Much progress has been made recently in developing
chitectures that can support quantum-information proces
~QIP!. The key result on the universality of quantum com
puters ~QC! is that given the ability to implement single
qubit and two-qubit gates in a network of connected qub
any computation or quantum simulation can be implemen
However, some systems are better adapted to implement
tain QIP tasks than others. In particular, lattice based syst
with regularly arranged qubits interacting with nearest nei
bors such as a neutral atom optical lattice, quantum-dot
rays, and phosphorus embedded silicon offer several ad
tages in terms of reconfigurability and scalability. F
example, optical lattices with nearest-neighbor tunnel
couplings have been shown to be a promising platform
simulate many-body Hamiltonians@1#. Generally, lattices are
well suited to perform parallel computation protocols such
entanglement distribution@2# and entanglement swappin
@3#.

The natural facility of these systems invites study of oth
models of computation that take advantage of the lattice
chitecture. Perhaps the most relevant computational mod
classical systems is a cellular automaton. The essential
behind cellular automata~CA! is to make use of simple loca
rules uniformly applied across a lattice of cells to gener
complex dynamics. Depending on the initial state of the s
tem and the underlying rule, long-range spatial and temp
correlations can develop resulting in complex behavior. C
sical CA can simulate a wide range of complex physi
phenomena including fluid dynamics, nonlinear diffusio
percolation, and phase transitions in many-body systems@4#.
Formally, a CA is termed complex if it evolves in a mann
that in some sense is computationally irreducible, meanin
cannot be predicted with a compactly written equation@5#. A
number of CA rules have been shown to be computation
universal, in the sense that they can emulate a universal
ing machine@4#.

The extension of the cellular automaton concept to qu
tum systems is fairly straightforward, though as we w
show, requires a slight modification of the classical CA p
1050-2947/2003/68~4!/042311~12!/$20.00 68 0423
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cedure for implementing the local rules. For a two-state C
which will be the focus of this paper, each cell in a quantu
cellular automata~QCA! corresponds to a qubit that can b
in a superposition of statesu0& and u1&, and the local rule is
carried out via a unitary gate operation on each neighb
hood. The essential new feature in a QCA that makes it
tinct from its classical counterpart is that nonlocal corre
tions can develop between cells resulting in the spread
entanglement throughout the system. This property of Q
will be of central importance in this paper.

Our motivation for studying QCA is to explore the pow
of low computational depth circuits applied in uniform
across a system to produce complex quantum dynamics.
is in marked contrast to the typical QC approach, wher
complex sequence of logic gates acting on distributed qu
in the computer is carried out in a serial fashion in order
produce the desired output of a specific computation. M
previous work on QCA has focused on mapping such s
tems to the QC circuit model@6,7#. Additionally, there have
been investigations of quantum lattice-gas~QLG! automata
for simulations of the Dirac equation in one-dimension~1D!
@8# and for topological computation@9#. Recently, there was
an experimental realization in liquid state nuclear magne
resonance of a QLG algorithm to solve the 1D diffusi
equation@10#. We propose using 1D QCA to explore com
plex quantum correlations generated by simple rules app
over small neighborhoods. Characterizing multiparticle e
tanglement is a field of active research both for its poten
use in QIP and in the study of nonlocality in physics. QC
can offer a unique approach to study the raw computatio
effort needed to generate such entanglement.

From an experimental standpoint, a QCA has a signific
advantage over a QC because individual qubits in the lat
do not need to be separately addressed, since uniform r
are applied in parallel across the lattice. In such an imp
mentation, applying uniform fields over the entire syste
helps to eliminate error resulting from cross talk on neig
boring qubits due to imperfectly aligned control fields. Som
specific physical systems have been proposed as candi
for QCA including quantum-dot arrays@11# and endohedra
fullerenes@12#. Throughout the development of the gene
11-1
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QCA formalism in this paper, we provide specific examp
of possible experimental implementations in order to emp
size the relevance of the QCA approach to present day t
nologies.

In Sec. II we introduce the formalism for QCA and sho
how to construct arbitrary three-cell neighborhood rules
ing homogeneous pairwise interactions and single-q
gates. We show how to transport quantum information w
QCA in Sec. III and demonstrate optimal sequences to s
two distant quantum states and to prepare three types o
tangled states. In Sec. IV we explore general propertie
entanglement dynamics with QCA. The dynamics of mu
spin entanglement are measured by a function linearly
lated to the purity of the single qubits averaged over
lattice. This measure has the advantage of being observ
in a physical system supporting the QCA architecture.
Sec. V we extend the theory to open systems and dem
strate how more general nonunitary rules can be imp
mented in the QCA paradigm using measurement and q
tum feedback. It is shown that for a particular mixing of
nonunitary rule with a unitary rule, entanglement is gen
ated across a spin chain where there is none for purely
tary evolution. This is an example of environment assis
entanglement generation. Finally, we present conclusions
open questions in Sec. VI.

II. FORMALISM

A. Simulating QCA rules

Consider a 1D array ofn lattice sites occupied by qubit
ordered 0 ton21. We define a radius-r QCA as one that
changes the state of a qubit at sitej dependent on the state
of the qubits in the neighborhood@ j 2r , j 1r #. Given a sys-
tem with nearest-neighbor interactions, the simplest unit
QCA rule hasr 51 describing a unitary operator applie
over a three-cell neighborhood (j 21,j , j 11):

M ~u00,u01,u10,u11!5u00&^00u ^ u001u01&^01u ^ u011u10&

3^10u ^ u101u11&^11u ^ u11, ~1!

where uab&^abu ^ uab means update the qubit at sitej with
the unitaryuab if the qubit at sitej 21 is in stateua& and the
qubit at site j 11 is in stateub&. In classical CA the local
update ruleM can be applied in parallel to all cells. To do s
requires that a separate register store the current state o
lattice so the previous state of the neighbors is known be
the cells are updated in parallel. For instance, radius-one
rules could be implemented by copying the current sta
updating the even ordered cells on the original and the
ordered cells on the copy, and splicing the updated cells
gether. By the no cloning theorem@13#, nonorthogonal quan
tum states cannot be copied so this is not possible for Q
However, the update can be divided into two stages: fi
update all the even qubits with ruleM, next update all odd
qubits. This rule is denoted as a Block partitioned QC
~BQCA! and guarantees that at each stage the operators
mute and thus can be implemented in parallel@4#.
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We show that any BQCA can be simulated with a latti
of even order constructed with an alternating array of t
distinguishable speciesABABAB. . . that are globally ad-
dressable and interact via the Ising interaction. In deriv
the construction of QCA rules we initially assume period
boundary conditions (n1 j [ j ). The simulation is shown to
be easily adapted to a lattice with fixed boundaries.

The general pairwise interaction Hamiltonian across a
lattice is

HI~ t !5 (
j 50

n21

(
a,b50

3

ga,b
j ~ t !sa

j
^ sb

j 11 , ~2!

where the Pauli operators are labeled$sa%5$1,sx ,sy ,sz%
andga,b

j (t) are, possibly time-dependent, coupling streng
(\51). It is straightforward to show that in order for th
Hamiltonian to commute over all nearest-neighbor pairs w
periodic boundary conditions, it is restricted to the form

HI~ t !5 (
j 50

n21

gj~ t !s rW j

j
^ s rW j 11

j 11
1 (

j 50

n21

hj~ t !s rW j

j , ~3!

wheres rW j

j
[sW •rW j defines the local Bloch vector at sitej. We

identify the local basis of each qubit along this Bloch vec
meaning sz

j [s rW j

j . The second sum in Eq.~3! refers to

single-qubit free Hamiltonians. Note that in order to satis
the periodic boundary conditions,n must be even.

The system dynamics can be controlled in a nontriv
way with limited addressability by assuming a 1D latti
constructed two species of qubitsA andB arranged in anti-
ferromagnetic order. Here the species may have distingu
able two-level energy spacings,hj5hA(B) for j even ~odd!,
meaning the species are addressable in frequency allow
even or odd ordered qubits to interact in parallel with
external field. The two species could also correspond to
joint two-dimensional subspaces of the same four-dimens
system. In either case, a general control Hamiltonian t
performs single-qubit rotations on the two species is writ
as

HC~ t !5VW A~ t !• (
j 50

n/221

sW 2 j1VW B~ t !• (
j 50

n/221

sW 2 j 11. ~4!

The total Hamiltonian acting on the system isH5HI(t)
1HC(t). For simplicity, we assume an isotropic pairwis
interactiongj (t)5g(t) corresponding to the Ising interac
tion, and transformH to the appropriate rotating frame s
that the total Hamiltonian becomes

H8~ t !5HI8~ t !1HC8 ~ t !5g~ t ! (
j 50

n21

sz
j
^ sz

j 111HC8 ~ t !.

~5!

Discrete time dynamics describing cellular automata can
implemented with continuous dynamics by first evolving t
system with the interaction Hamiltonian followed by evol
tion by the control that performs simultaneous single-qu
1-2
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gates on either or both species. This can be realized wi
fixed Ising interaction punctuated by ‘‘hard’’ control pulse
as is done in NMR pulse sequencing@14#, or the physical
system may allow the pairwise couplings to be turned
during the single-qubit gates. In any case, because the i
action Hamiltonian commutes with itself at all times, th
unitary corresponding to coupled evolution can be written
U(t)5exp@2i*0

t HI8(t)dt# and the single-qubit gates are ge
erated byHC .

The simplest nontrivial BQCA rule obtainable in the tw
species architecture is described by the following gate
quence:

M ~1,u,u,u2!5e2 i (p/2)smW U„@g/~2g!#…eigszei (p/2)smW ,
~6!

where u5eigsnW is an arbitrary element of SU~2! written
as a rotation about the Bloch vectornW 5(sinu cosf,
sinu cosf,cosu) and mW 5(sinu/2 cosf,sinu/2 cosf,cosu/
2) . The evolution time in brackets, viz.,U(t5@x#), means
add the appropriate multiple ofp/ugu to the quantityx to
make it positive. Henceforth, we assumeg.0. All qubits of
speciesA(B) are updated by the ruleMA(B) when the single-
qubit gates act on that species. A single step of the BQC
defined as the sequence:M[MAMB, which updates all
cells, and the BQCA rule iteratedt times on the initial state
uc(0)& generates the stateuc(t)&5@M # tuc(0)&.

The particular rule, Eq.~6!, is left/right symmetric with
the interpretation that the center qubit is rotated by
amount proportional to the sum of the qubit values of
neighbors. Note thatMA(u2,u,u,1)5sx

BMA(1,u,u,u2)sx
B .

Another elementary rule is

M ~1,u,u,1!52e2 i (p/2)smW @e2 i (p/2)syU„@g/~4g!#…

3ei (p/22g/2)szei (p/4)syU„@23p/~4g!#…

3ei (3p/2)sze2 i (p/4)szei (g/2)sy

3U„@2p/~4g!# !ei (p/4)syei (p/4)szei (p/42g/2)sx

3ei (p/2)szei (p/4)syU„@g/~4g!#…e2 i (g/2)sz]

3ei (p/2)smW , ~7!

where the unitaryu and the Bloch vectors (nW ,mW ) are defined
as above. Combining rules~6! and ~7! we can construct al
symmetric QCA rules:

M ~u00,u015u10,u11!

5M ~v2,v,v,1!M ~1,w,w,1!M ~1,u,u,u2!,

~8!

wherev5u00
1/2,u5u11

1/2, andw5u00
21/2u01u11

21/2. A maximum
of six pairwise interactionsU interspersed by single-qub
gates is sufficient to simulate the symmetric rules.

Asymmetric rules can be constructed if the Ising inter
tion is allowed to have different coupling strengths betwe
left-center and center-right pairs. The appropriate Ham
tonian is
04231
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Hasym5 (
j 50

(n22)/2

@g1~ t !sz
2 j

^ sz
2 j 111g2~ t !sz

2 j 11
^ sz

2 j 12#.

~9!

This asymmetry can be built into the system as is sugges
for instance, in proposals to implement quantum compu
tion in optical lattices@15#. Here atoms are trapped in a 3
periodic potential created by standing waves of interfer
laser beams and prepared with one atom per potential w
An antiferromagnetic ordering of atomic species can be c
ated along one dimension, and by appropriate tuning of
laser parameters, wells can be joined along this dimens
such that each atom interacts with its left or right neighb
By choosing different interaction strengths~or times! be-
tween the center-left and right neighbors,Hasymcan be simu-
lated.

Given the ability to implementHasym, the following rule
can be generated:

M ~1,u21,u,1!5e2 i (p/2)smW U~@ t# !ei (p/2)smW , ~10!

where the time and couplings satisfy

E
0

t

@g1~ t !2g2~ t !#dt5g,

E
0

t

@g1~ t !1g2~ t !#dt50 ~mod 2p !, ~11!

and (u,mW ,nW ) are as above. A general QCA rule can be co
structed from the above elementary rules:

M ~u00,u01,u10,u11!

5M ~1,x21,x,1!M ~1,x,x,1!M ~v2,v,v,1!

3M ~1,w,w,1!M ~1,u,u,u2!, ~12!

where v5u00
1/2,x5Au10u01

21,w5u00
21/2u01u11

21/2, and u
5u11

1/2. A maximum of 11 sequences of left/right shifts pun
tuated by single-qubit gates are sufficient to implement
arbitrary three-cell BQCA ruleM, although it is uncertain
whether this is optimal.

The present construction ofM (u00,u01,u10,u11) with
ui j P SU~2! is only a subset of the most general ru
having three additional relative phase
M (u00,eif1u01,eif2u10,eif3u11). One relative phase can b
fixed by applying aẑ rotation,ei (f1/2)sz, to the neighboring
qubits after an update. Also, for each unitaryu5eigsnW the
replacementg→g1p introduces a sign change. A secon
relative phase is fixed by applying different controlled pha
gates between a qubit and each neighbor~as is possible with
the interactionHasym). Generating a third relative phase r
quires a direct interaction between left and right neighbo
not possible in the 1D architecture with only neare
neighbor connectivity and two species addressability.
1-3
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B. Boundary conditions

In the above treatment we have assumed periodic bou
ary conditions, in which case the BQCA rules can be imp
mented uniformly with only global addressability of two sp
cies. In practice, a system coupled by the Ising interac
with periodic boundaries could be realized by a custom
signed ring molecule with alternating atomic species or p
haps with trapped atoms in a ring-type cavity. In most e
perimental situations it will be easier to construct a line
system with boundaries. Consider an open 1D spin ch
labeled from left to right by the integers 0 ton21, where as
aboven is assumed even. One can simulate evolution wh
each cell is updated according to neighborhood values
introducing fictitious boundaries on the left and right en
with fixed values:SL,RP$0,1%. This is accomplished by ap
pending appropriate single-qubit gates to the ends of
chain after each instance ofU(t) in the above rules. For a
sequence updating even ordered~A! species, appendU(t)

with e2 i (21)SLgtsz
0
, and for a sequence updating odd order

~B! species, append withe2 i (21)SRgtsz
n21

. In this way, ad-
dressability at the ends~or at least the ability to introduce
energy shifts at the ends! is sufficient to simulate BQCA
rules over 1D systems with boundaries.

C. Universality

We have identified a finite set of rules to construct a cl
of radius-1, two-state BQCA. We now discuss some iss
regarding the universality of this class of quantum cellu
automata. By universality we refer to the ability to emula
other computations, in particular, other QCA and quant
computers, in an efficient manner. A distinguishing feature
computation with classical cellular automata is that CA ha
minimal time complexity in that the same rule is applied
the data register at each iteration. This is in contrast to
conventional computers that use a complex sequence of l
gates over the period of computation. It has been shown
a radius-1, two-state classical CA rule, designated rule 1
is universal in the sense that by appropriate choice of in
state it can emulate any other CA as well as a Turing m
chine @4#. It should be emphasized that this rule updates
cells synchronously. It is not obvious that by appropria
choice of initial state, a single BQCA rule would be univers
in the same way. It can be shown, however, that a seque
of rules can simulate a quantum computer with only line
cost in space and time resources. This may violate the s
of using a single rule to generate complex dynamics
demonstrates that the underlying physical architecture
QCA supports universal computation. The ability to simula
a QC follows from the work of Benjamin who has show
@16,7# that an open 1D lattice composed of an alternat
array of two species of qubits can be used for quantum c
putation. The only architectural requirements are global
dressability of the species and addressable boundaries
proposes two protocols with different physical assumptio

The first protocol@7# assumes that unitariansSf
u can be

implemented in parallel, meaning ‘‘apply the unitaryu to
speciesS if the field value is equal tof.’’ The field value is
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defined as the number of 0’s minus the number of 1’s in
neighborhood of each qubit, thereforef P$22,0,2% inside
the lattice andf P$21,1% at the boundaries. BQCA rule
provide an explicit construction of these unitarians, viz., t
sequenceS2

uS0
vS22

w acting on interior spins is exactly simu
lated by the symmetric BQCA ruleMs(u,v,v,w). In this
proposal the boundary spins need to be addressable in o
to load information into the lattice, but the only operatio
needed are the bit flips,S

21,1
sx . When the entire lattice is

coupled via the Ising interaction, this is achievable by d
namically decoupling the boundary spins from the rest of
lattice using standard refocusing techniques@14#. Explicit
pulse sequences to perform computation with endohe
fullerenes in a QCA architecture have been recently propo
in Ref. @12#.

In the second protocol@16# it is not necessary to apply
unitarians that depend on the total field value, however, i
assumed that the Hamiltonian between left/center neighb
HAB, can be turned ‘‘off’’ while the center/right Hamiltonian
HBA is turned ‘‘on,’’ and vice versa. This is akin to the phys
cal requirement for asymmetric BQCA rules and may
more difficult to engineer in a given system.

The ability to map BQCA to Benjamin’s model of com
putation resolves a question about whether BQCA are u
versal with respect to the ability to efficiently simulate oth
quantum cellular automata. Watrous@6# has shown that 1D-
partitioned QCA can be simulated by a quantum Turing m
chine ~QTM! with only linear slowdown. 1D-partitioned
QCA are a restricted class of 1D-QCA in which each cell
partitioned into three subcells and the rule updates the c
by permuting subcells of neighboring cells and operating
the new cells in parallel with quasilocal unitary operation
van Dam@17# extended this result to prove that quantum g
cellular automata~QGCA! can simulate any unitary QCA
with only a polynomial slowdown. QGCA evolve by a re
peated sequence of two steps: one step acts to permut
basis states within a certain neighborhood and the sec
step applies parallel quasilocal gates over the neighborh
Not all of the quasilocal gates in the QGCA model can
implemented with pairwise interactions and two species
dressability. However, one can use Benjamin’s protocols
show that with a properly prepared initial state, a sequenc
homogeneous update rules can simulate the QGCA m
with only a linear cost in space and time resources. Beca
BQCA rules are sufficient to implement Benjamin’s mod
BQCA are also universal in this respect.

III. INFORMATION TRANSPORT

The discrete time process corresponding to QCA evo
tion is a useful way to study information flow in quantu
systems. For classical CA the maximum speed of inform
tion flow, cmax, is 1 cell per update, which defines a lig
cone for information propagation. This can be realized,
instance, by beginning in the state 0. . . 010 . . . 0 andevolv-
ing with Wolfram’s rule 254@4#. This rule updates the cente
cell in a three-cell neighborhood, mapping each cell to a
unless its left and right neighbors are in state 0,0. Evolv
the initial state will cause the string of 1’s to grow by on
1-4
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cell on the left and right at each step. This does not fit i
the QCA paradigm for two reasons. First, the local rule is
unitary, e.g., both strings ‘‘110’’ and ‘‘111’’ are mapped t
‘‘111.’’ Second, the applied rule updates all cells simul
neously, not in a block partitioned manner. There are loc
reversible CA rules that spread information at speedcmax
~such as rule 150!, but is there a unitary BQCA rule that ca
saturate the speed limit? The answer is affirmative as
shown below.

We consider ann cell register initialized in the state
u1&0^ u0&1 . . .n21 with left and right boundary condition
(SL50,SR50). The approach is to map the solitary 1 into
two-cell unit which then propagates 2 sites per upd
and is decoded into a single cell at the other bound
The BQCA sequence to achieve this
sz

n21@M (1,e2 i (p/2)sx,e2 i (p/2)sx,e2 ipsx)#n/2. The total time
to transport the information overn21 cells is@from Eq.~6!#
Tn5np/(4g)1(n11)ts , wherets is the time to implement
a single-qubit gate. If we assume that single-qubit gates
be implemented on a time scale much faster than the m
body interaction,ts!p/(4g), then the information speed i
c5(n21)/T.4g(n21)/(pn). The connection is made t
classical CA’s by noting that nontrivial rules use condition
bit flips, which according to Eq.~6! are implemented in a
time t5p/(4g). Thus the maximum speed of informatio
flow is cmax51/t54g/p. The encoding and decoding con
sume a fixed amount of time but in the limit of largen, cmax
is approached.

The state could just as well have begun in a superposi
state uf&05au0&01bu1&0, in which case the BQCA se
quence will transport the state to siten21 as shown in Fig.
1. It does so by first mapping the product state into a tw
particle entangled state. The basis vector with a pair of a
cent 1’s is shifted two cells per update, and the state
mapped back to a product state at the other boundary.
entanglement present during transport is evident from
space-time diagrams in Fig. 1. The first diagram shows
probability density for each spin to be in stateu1& defined by
P1(r j )5Tr@ u1& j j ^1ur j #, wherer i5Trnot i(r) is the reduced
state of the spin at sitei of the global stater. The second
diagram displays the reduced von Neumann entropy, defi
by S(r i)52Tr(r i ln ri). Starting from a pure separable sta
and evolving unitarily, the residual mixedness of each spin
the adjacent pair results from mutual entanglement.

FIG. 1. Transporting a quantum state over ann514 cell 1D
lattice via BQCA evolution by the rule
M (1,e2 i (p/2)sx,e2 i (p/2)sx,e2 ipsx). Space-time diagrams are show
with cell number on the horizontal axis and time flowing dow
ward. On the left is a history of cell site probability to be in stateu1&
and on the right, the reduced von Neumann entropy of each
~black51, white50!.
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explore in more detail the dynamics of entangled sta
below. By linearity, using the above BQCA sequenc
any stater0 can be swapped throughn21 lattice sites
prepared inu0& in a time Tn.np/(4g). At the cost of
one additional update on theB species, the states of tw
qubits on the ends of a chain can be swapped
the sequence: sz

0sz
n21MB(1,e2 i (p/2)sx,e2 i (p/2)sx,e2 ipsx)

@M (1,e2 i (p/2)sx,e2 i (p/2)sx,e2 ipsx)#n/2, as shown in Fig. 2.
The QCA state transport timeTn5np/(4g) is provably

@18# the minimal time to translate a quantum operator o
n21 sites of a spin chain with pairwise interactions. Th
protocol should be compared to the total propagation ti
using ‘‘soliton operators’’ proposed in Ref.@19#. There a
single-qubit state is encoded into three qubits which th
propagate through the chain and are decoded to one qub
the end. Similar to the present proposal, the discrete ev
tion is generated via the Ising interaction punctuated by
mogeneous single-bit gates. The swapping time using
soliton operators isTsol n5(n11)p/(4g), slightly longer
than the present method. Both pulse sequences require
dressability at the boundaries but the simpler QCA seque
has the additional requirement of an architecture that s
ports an alternating array of two species. It should be emp
sized that neither of these methods are true swap seque
in the sense that any quantum information encoded in
intervening cells will be disturbed during the sequence. Th
may be useful in quantum architectures where quan
‘‘memory’’ is stored in qubits spatially separated from ea
other by ‘‘bus’’ qubits initialized to the stateu0& that act as
conduits for quantum information. Architectures with th
kind of sparsely distributed memory avoid correlated err
induced by the environment and can make the system a
nable to quantum error correction.

BQCA rules also can readily be constructed to distrib
entanglement. Consider the creation of an entangled pa
qubits at the boundaries of an open chain of sizen>4.
Choosing boundary conditions (SL50,SR50), we begin
with a single-qubit ‘‘seeded’’ to the superposition sta
(1/A2)(u0&1u1&) near the middle of the chain with all othe
spins initialized to the stateu0& and apply a QCA sequence t
create the maximally entangled pair described by the s
(1/A2)(u0&0^ u0&n211u1&0^ u1&n21). The particular BQCA
sequence and optimal location of the seed spin will dep
on the size of the latticen. We choose a convention that th
spin be of theA species and closest to the middle of t
chain. Forn54k, kPN, the seed spin is located at siten/2

and the update sequence ise2 i (p/4)sz
0
MB(1,e2 i (p/2)sx,

e2 i (p/2)sx,e2 ipsx) @M (1,e2 i (p/2)sx,e2 i (p/2)sx,e2 ipsx)#k21

ll

FIG. 2. Swapping the states of cells at the boundaries of an
514 cell lattice through intermediary cells initialized tou0&.
1-5
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M (1,e2 i (p/2)sx,e2 i (p/2)sx,e2 i (p/2)sx). Similarly, for n54k
12, the seeded spin is located at siten/221 and the update

sequence ise2 i (p/4)sz
0
@M (1,e2 i (p/2)sx,e2 i (p/2)sx,e2 ipsx)#k

M (1,e2 i (p/2)sx,e2 i (p/2)sx,e2 i (p/2)sx). The sequence work
by updating the stateu0 . . . 010 . . . 0& once with the rule
M (1,e2 i (p/2)sx,e2 i (p/2)sx,e2 i (p/2)sx), creating a separate
pair of adjacent spins in the stateu1&. These pairs then
propagate outward under the same rule used to trans
quantum information to the boundaries. An example forn
514 is shown in Fig. 3~a!. The total time to produce an
entangled pair at the boundaries is calculated, using Eqs~6!
and ~7! and again assumingts is negligible, to beTn5(4
1n/2)p/(4g). By a similar argument to the optimality o
quantum state transport sequence, the present sequenc
distributing entanglement is optimal within the QCA fram
work. However, if one is allowed to perform measureme
as well as unitary evolution, then an entangled pair can
produced at the ends using ‘‘entanglement swapping.’’ Giv
the same architecture under present consideration, it has
shown@3# that a maximally entangled pair can be swapped
the ends of a spin chain in a time,T5p/(2g) independentof
the length. The entangled pair could then be used as a
source to teleport a quantum state from one end of the c
to the other. Naturally, any protocol to deterministically d
tribute quantum states must preserve causality and is fu
mentally limited by the speed of light which enters into t
protocol through classical processing of measurement re
over the length of the chain.

Multiparticle entanglement can be constructed using
slight variation of the sequence for distributing entang
pairs. As above we assume boundary conditions (SL50,SR

50) with a seeded qubit in the superposition (1/A2)(u0&
1u1&). An n-spin Green berger-Horne-Zeilinger~GHZ!
state (1/A2)(u0 . . . 0&1u1 . . . 1&) can be generated a
follows. For n54k, kPN, the seed spin is located at si

n/2 and the update sequence ise2 i (21)k(p/4)sz
0

@M (1,e2 i (p/2)sx,e2 i (p/2)sx,e2 ipsx)#k. Similarly, for n54k
12, the seeded spin is located at siten/221 and the update

sequence isei (21)k(p/4)sz
0
MB(1,e2 i (p/2)sx,e2 i (p/2)sx,e2 ipsx)

@M (1,e2 i (p/2)sx,e2 i (p/2)sx,e2 ipsx)#k. An example for n
514 is shown in Fig. 3~b!. The total time for the BQCA
sequence isTn5np/(8g).

FIG. 3. Generating entangled states beginning with a see
qubit in the superposition state (1/A2)(u0&1u1&). ~a! A maximally
entangled pair at the boundaries: (1/A2)(u0&0^ u0&n211u1&0

^ u1&n21). ~b! The n-spin Greenberger-Horne-Zeilinger~GHZ!
state: (1/A2)(u0 . . . 0&1u1 . . . 1&).
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Choosing other, more complicated, initial states c
allow BQCA generation of many classes of multipartic
entanglement. For example, if we fix boundaries
(SL50,SR50) and initialize the n cell lattice
to uC5exp@2i(p/4)( j 50

n21sy
j #u0 . . . 0&, then the resultant

state after one update by the rul
M (1,e2 i (p/4)sz,e2 i (p/4)sz,e2 i (p/2)sz) is characterized by
many-particle quantum correlations. In fact it is equivale
up to local unitarians, to the so-called cluster state@20#

uCn clus&5
1

2n/2
^ a50

n21~ u0&asz
a111u1&a), ~13!

with the conventionsn51. These states obtain maximal re
duced entropy of every spin. Most notably, they have
property of maintaining persistency of entanglement betw
the remaining set of qubits when some are lost~depolarized,
measured, etc.!. They have exponentially large Schmid
number, namely, any expansion of the state in terms o
product basis will require at least 2n/2 terms. This is to be
contrasted with then-spin GHZ state which has Schmid
number 2.

IV. ENTANGLEMENT DYNAMICS

A. Quantifying multispin entanglement

Generally, QCA evolution can take a configuration
spins prepared in a product state to a number of differ
entangled states. In order to characterize the dynamic
entanglement, it would be helpful to have a single parame
that quantifies the amount of multiparticle entanglement c
tained in a state at any given time step. A good measur
entanglement should capture the nonlocal nature of the q
tum correlations of the spins and therefore should be a fu
tion on the state that is nonincreasing, on average, un
local operations and classical communication. Because
tanglement can be shared in different ways by different s
sets~parties! of the spins in the lattice, there does not exis
single function that describes multipartite entanglement.
the purposes of this paper we quantify the amount of mu
spin entanglement with a function on pure states ofn qubits
introduced in@21# and expressible as

R~ uc&)52S 12~1/n! (
j 50

n21

Tr@r j
2# D . ~14!

The measureR is linearly related to the purity of the singl
qubits averaged over the lattice and satisfies two impor
properties. First, 0<R(uc&)<1, where R(uc&)50 if and
only if uc& is a product state, andR(uc&)51 for some en-
tangled states. Second,R(c&) is invariant under local unitar-
iansU j .

A significant advantage of this function over other po
sible measures is that it can be observed in a straightforw
manner by measurement. This can be done by introducin
second, identical 1D lattice and interacting the two lattic
bitwise, with a third addressable 1D lattice that can be p
pared and measured. The measurement requires only

ed
1-6
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each lattice be addressable but does not require addres
ity of cells within the lattice and is described in Ref.@22#. A
deficiency ofR as an entanglement measure is that it can
distinguish subglobal entanglement. For example, in an54
lattice, the product state of two maximally entangled B
states and the four-spin GHZ state both haveR values equal
to 1. This should be kept in mind when quantifying the e
tangling capacity of BQCA rules as is done below. In pr
ciple, there are other measurements that can be carried
over a many spin system to distinguish one type of sha
entanglement from another.

B. Generating multispin entanglement

In Sec. III, we considered some examples of BQCA ru
that generate and distribute entangled states. In this sec
instead of searching for BQCA sequences that generate
ticular entangled states, we explore some basic propertie
the rules themselves by way of two examples. While th
examples are not intended to simulate any particular phys
system, they do illustrate some universal behaviors of BQ
and indicate the computational power of simple rules app
over local, in this case three-cell, neighborhoods.

It would be beneficial if some predictive statements co
be made about the behavior of QCA. We know that class
cellular automata have the property that a globally revers
rules follow closed evolution@4#. That is, any initial configu-
ration will evolve back to itself after a characteristic peri
that depends on the rule and the configuration. The m
mum period of evolution is the size of the configurati
space, which for ann cell lattice with 2 states per cell is 2n.
Linear CA rules are those that satisfy the property that for
initial configuration that is a mixture of two configuration
uW 5avW 1bwW , where a,bPR, the rule acts linearly on the
inputs: MuW 5aMvW 1bMwW . If the periods of the configura
tions vW andwW under ruleM areTM(vW ) andTM(wW ), respec-
tively, then the period ofuW is TM(uW )5 lcm„TM(vW ),TM(wW )….
For an arbitrary mixture of m configurations, uW

5(k51
m akvk

W , the period isTM(uW )5 lcm($TM(vk
W %).

We consider the BQCA rule M1
[M (1,e2 i (p/2)sx,e2 i (p/2)sx,e2 i (p/2)sx) acting on an initial
product state of spins with boundaries fixed at (SL50,SR
50). For the computational basis states withu0& on the in-
terior qubits andu0& or u1& at the ends, the evolution i
reversible as shown in Fig. 4. These four initial states h
characteristic periods 1,11, and 13 and at no time is entan
ment generated by the rule. If the initial state is chosen a
evenly weighted superposition of these four basis sta

uc(0)&5e2 i (p/4)(sy
0
1sy

n21)u0 . . . 0&, then entanglement is
generated by the rule because nonseparable phases ac
late on the coevolving basis states. The space-time diagr
of probability density and reduced entropy are shown in F
5~a!. The evolution is periodic with a period given byT
5lcm(1,11,13)5143. The multiqubit entanglement durin
the evolution is plotted in Fig. 6. The entanglement ne
attains values aboveR„uc(t)&…50.6, and this is evident in
the space-time plot of reduced entropy which shows tha
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any given time step no more than eight out of ten spins
entangled with each other.

The entanglement dynamics are dramatically different
the same system and initial-state evolving under the BQ
rule M2[M (1,e2 i (p/4)sx,e2 i (p/4)sx,e2 i (p/4)sx). This rule ro-
tates each spin by half the amount of the ruleM1, however,
the quantum dynamics does not follow a simple composit
rule, i.e.,M1Þ(M2)2. This is because the underlying Hami
tonians that update the states of speciesA andB are noncom-
muting so that correlations build up at rates that are
linearly related. The space-time diagrams of probability d
sity and reduced entropy plotted in Fig. 5~b! show that after
three steps, correlations spread throughout the lattice. No
riodicity is evident, and after roughly 20 steps, the multiqu

FIG. 4. Evolution of three computational basis states by the r
M (1,e2 i (p/2)sx,e2 i (p/2)sx,e2 i (p/2)sx) over an n510 lattice with
boundaries fixed atu0&. The probability density space-time dia
grams over one period for the initial states are shown:~a!
u10 . . . 00&, ~b! u0 . . . 01&, and~c! u10 . . . 01&. The evolution of the
stateu0 . . . 0& is trivial. At no time is entanglement generated.

FIG. 5. Entanglement dynamics visualized by the space-t
histories of the evolution of a chain of ten spins by two BQC
rules. The boundaries are fixed atu0& and the initial state is the
same for both rules with all qubits initialized to 0& except for the
qubits at sites 0 andn21 each in the superposition state (
A2)(u0&1u1&). ~a! Rule M (1,e2 i (p/2)sx,e2 i (p/2)sx,e2 i (p/2)sx). ~b!
Rule M (1,e2 i (p/4)sx,e2 i (p/4)sx,e2 i (p/4)sx).
1-7
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G. K. BRENNEN AND J. E. WILLIAMS PHYSICAL REVIEW A68, 042311 ~2003!
entanglement, plotted in Fig. 6, saturates at a value
'R„uc(t)&…50.9 with small fluctuations. One way to dis
cern whether the rule is generating many different classe
entangled states during the evolution is to examine temp
variation of Schmidt numbers of the stateuc(t)& over the set
of all 2n21 bipartite divisions of then lattice qubits. The
Schmidt numbers are invariant under local unitary operati
and under a bipartite division ofk and n2k qubits, their
range is the integers in the interval@0,min$2k,2n2k%#. We
have calculated the history of Schmidt numbers over the e
lution period and find that the rule generates a large num
of different classes of entangled states. This demonstr
that the ruleM2 explores a larger volume of the Hilbe
space of pure states inH 2

^ n than does ruleM1 for the given
initial state.

It is an open question under what BQCA rules and init
states is the set of states generated during evolution dens
the Hilbert space of pure states inH 2

^ n . One might expect
that rules that rotate the updated spins by an angle that i
irrational multiple of p would accomplish this for a large
class of initial states.

V. NONUNITARY RULES

A. Formulation

Up to this point we have described how to implemen
class of unitary BQCA rules. In general one would like
have a prescription for implementingnonunitary rules as
well. Of the 256 Wolfram rules for radius 1, two-state cla
sical CA, only 16 are locally invertible. They are given by

U j ,k,l ,m5u00&^00u ^ ~sx!
j1u01&^01u ^ ~sx!

k1u10&^10u

^ ~sx!
l1u11&^11u ^ ~sx!

m, ~15!

where$ j ,k,l ,m%P$0,1%. Among classical CA, all the unitary
rules generate rather simple behavior compared to the c
plex dynamics generated from some of the other, nonunit
rules@4#. For example, rule 110 is described by the followi
update table:

FIG. 6. Multiqubit entanglement generated during the BQC
evolution plotted in Fig. 5. Entanglement of the global state is p
ted for the rulesM (1,e2 i (p/2)sx,e2 i (p/2)sx,e2 i (p/2)sx) ~triangles!
andM (1,e2 i (p/4)sx,e2 i (p/4)sx,e2 i (p/4)sx) ~boxes!.
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R110:
111 110 101 100 011 010 001 00

0 1 1 0 1 1 1 0

which is not one to one because both states 011 and 001
to 011. As mentioned above, rule 110 is universal and
might expect that for quantum cellular automata there
interesting dynamics to be explored when the register is
longer a closed system obeying unitary dynamics but in
acts with an environment in an irreversible way.

Nonunitary rules correspond to completely positive ma
applied to a system dependent on the state of the neigh
hood. A general, completely positive map on a quantum s
r can be written as a superoperator in the Krauss repre
tation @23# as S(r)5(m51

k FmrFm
† , where the total numbe

of effectsFm is k and trace preservation of the state is e
sured by the constraint(m51

k Fm
† Fm51. In the QCA context,

the effects acting on a three-cell neighborhood (j 21,j , j
11) are a sum of actions on qubitj induced by orthogona
states of the qubits at sitesj 21 andj 11. The superoperato
can be written as the composition

Sj~r!5Sj
00sSj

01sSj
10sSj

11~r!, ~16!

where

Sj
ab~r!5uab&^abu ^ (

m51

kab

f m
abr f m

ab†
^ uab&^abu. ~17!

Here,kab denotes the number of effects that act on the
dated qubit j when the neighborhood is in the sta
uab& j 21,j 11. The single-qubit superoperators are trace p
serving, i.e.,(m51

kab f m
ab†f m

ab51. As with the unitary maps, the
mapsSj andSj 12 commute, so qubits at every other site c
be updated in parallel. We denote a total BQCA update
quence from time t to t11 by r(t11)5S(r(t))
5S AsS B

„r(t)…, where

S A~r!5S0sS2s•••sSn22~r!,

S B~r!5S1sS3s•••sSn21~r!. ~18!

As an example, the CA rule 110 updating the state o
qubit at sitej is written as

Rj
110~r!5F1~ j !rF1

†~ j !1F2~ j !rF2
†~ j !, ~19!

where

F1
j 5u00&^00u ^ 1j1u10&^10u ^ 1j1u11&^11u ^ sx

j 1u01&

3^01u ^ u1& j j ^1u,

F2
j 5u01&^01u ^ u1& j j ^0u. ~20!

The rule can be decomposed into unitary and nonunit
BQCA rules as

Rj
110~r!5Sj

01
„M ~1,1,1,sx

j !rM ~1,1,1,sx
j !…, ~21!

where

-
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ENTANGLEMENT DYNAMICS IN ONE-DIMENSIONAL . . . PHYSICAL REVIEW A 68, 042311 ~2003!
Sj
01~r!5u01&^01u ^ ~ u1& j j ^1uru1& j j ^1u1u1& j j ^0uru0& j j ^1u!

^ u01&^01u!. ~22!

When the neighborhood is in stateu01&, rule 110 has the
effect of an amplitude damping channel on qubitj, i.e., it
maps a mixed state to a pure stateu1&.

B. Simulation

In this section we demonstrate how to implement nonu
tary rules within a QCA architecture. A nonunitary map on
quantum system residing in a Hilbert spaceH s can be
thought of as open system dynamics that arise from uni
operation in the combined spaceH s

^ H e of the system and
some environment, followed by tracing over the enviro
mental degrees of freedom. Any superoperator on a sys
of dimensiond can be realized in this fashion with an env
ronment of dimension at mostd2; meaning that the maxima
number of effects in a superoperator expansion isk5d2 @24#.

Generally, implementing control over a combined syst
and environment of this size is difficult, however, it has be
shown that by using measurement and feedback, a sin
qubit environment is sufficient to simulate open system
namics@25#. The simulation works by coupling a single qub
e prepared in the stateu1&e5(1/A2)(u0&e1u1&e) to the sys-
tem s via a HamiltonianHsym5gP^ sz , whereP is a pro-
jector onto a pure state ins. The corresponding unitary op
eration is U(t)5e2 iH symt5cos(gtP)^12 isin(gtP)^sz. By
suitable averaging techniques, namely, conjugating sh
time evolutionU(Dt), whereDt!t, with unitary operations
on s, the projectorP can be transformed into any positiv
unit trace, operatorP̄. Finally, e is measured in thesx basis
and the result is fed back tos with one of the two unitarians
U0 ,U1, depending on the measurement result. This proc
will implement any superoperator described by two effec
F05U0cos(gtP̄) andF15U1sin(gtP̄). Maps with more than
two effects can be simulated by repeated cycles of meas
ment and feedback.

In the QCA context, we want to activate nonunitary d
namics on a qubits dependent on the neighborhood sta
This can be accomplished by first ‘‘turning on’’ a contr
qubit c dependent on the neighborhood state then implem
ing the unitaryUc2sym5e2 i u1&cc^1u ^ Hsymt during the simula-
tion steps described above. For instance, the superope
Ss

01(r) can be implemented by first entangling the regis
and the control qubit~initialized to u0&c) with the unitary
BQCA ruleMc(1,1,e2 i (p/2)sx,1). We choose the projector in
Hsym to beP5u1&sŝ 1u and simulate open system dynami
on s by evolving the combined system (c,e,s) with the uni-

tary Uc2sym5e2 i (gt/4)sz
c

^ sz
e

^ sz
s
ei (gt/4)sz

e
^ sz

s
ei (gt/4)sz

c
^ sz

e
. The

gate Uc-sym can be efficiently implemented using pairwis
interactions between system pairs (c,e) and (e,s) @22#. At
the measurement stage, the classical result of the mea
ment one should be ignored, equivalent to tracing over t
environmental degrees of freedom. This can be accomod
by an environmental qubit that sinks information of the me
surement result to a large reservoir~such as an atom tha
emits spontaneous radiation!. The conditional feedback ca
04231
i-

ry

-
m

n
le-
-

rt-

ss
:

re-

.

t-

tor
r

re-

ed
-

be implemented without knowledge of the measurement
sult using a controlled-unitary operation betweene and s,
namely, U f b5u0&eê 0u ^ U0

s1u1&eê 1u ^ U1
s . Finally, the

control qubit c needs to be disentangled from the regis
with the rule Mc(1,1,ei (p/2)sx,1), and the ‘‘environment’’
qubit reset tou1&e .

Note that this protocol has the unwanted effect of app
ing a unitaryU0 to the qubits regardless of the state of th
neighborhood, because the feedback is only conditioned
the environmental state which is initialized tou0&. This can
be obviated by instead using the feedback gate.U f b8
5u0&eê 0u ^ 1s1u1&eê 1u ^ U0

†sU1
s , and after the control has

been disentangled froms, applying a unitary BQCA ons. For
example, after the simulation ofSj

01 with the gateU f b8 , the
unitary BQCA ruleMs(1,U0 ,1,1) will apply the necessary
feedback. By the superoperator decomposition, Eq.~16!, any
nonunitary BQCA rule can be implemented by at most fo
instances of the above open systems simulation using
appropriate unitary ruleMc for each neighborhood valu
uab&.

A possible implementation of nonunitary BQCA rules
shown in Fig. 7 for an architecture with three stacked
lattices. The protocol for interacting registers in an optic
lattice is outlined in Ref.@22#.

C. Results

We investigate the effect of adding decoherence to a u
tary BQCA by mixing the rules R110 and R108

5M (1,1,1,sx
j ). This is described by a one-parameter m

on the neighborhood (j 21,j , j 11) written as:

Sj~r,p!5Sj
01
„M ~1,1,1,sx

j !rM ~1,1,1,sx
j !,p…, ~23!

where

Sj
01~r,p!5u01&^01u ^ „~ u1& j j ^1u1A12pu0& j j ^0u…r~ u1& j j

3^1u1A12pu0& j j ^0u!1pu1& j j ^0uru0& j j ^1u!

^ u01&^01u!. ~24!

FIG. 7. Sequence of steps to implement nonunitary BQCA ru
on a 1D lattices using qubits in a control latticec and an environ-
ment latticee. The lattice cells are assumed addressable along
vertical but not the horizontal direction with gray~white! cells cor-
responding to qubit speciesA(B). Shown is a sequence sketche
over a three-cell section of the lattices for implementing a nonu
tary rule onB species qubits dependent on theA species neighbors
~i!. A product state in the computational basis ofs is shown with the
latticesc and s initialized to u0&. ~ii !. The state of theA species
qubits is fanned out to corresponding sites ine and c using CON-

TROLLEDNOT gates. ~iii !. The unitary BQCA rule
MB(u00,u01,u10,u11) acts onc to activate the controls depende
on the neighborhood. Nonunitary evolution ons is simulated using
interactions between the lattices, measurement one, and feedback
on s. Afterwards, the inverse of steps~ii ! and ~iii ! disentangles the
three lattices.
1-9
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FIG. 8. System evolution by a mixture of unitary and nonunitary rules:S01(r,p). Results are shown forp51/2 ~boxes! and p51
~triangles! with connecting lines to guide the eye.~a! Mixedness of the systemr(t). ~b! Entanglement, quantified as the average tanglt
over all spin pairs. Increased coupling to the environment increases the entanglement.
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In the casep→0(1), the rule approachesR108(R110). We
study the evolution of entanglement under this map when
initial state is chosen to be the superposition of all compu
tional basis statesuc(0)&5exp@2i(p/4)( j

n21sy
j #u0&. Note

that R108 permutes computational basis states so thatuc(0)&
is an eigenstate of this rule and no entanglement betw
spins is generated.1 However, when the system is subject
to nonunitary rules, entanglement can develop. This beha
is illustrated in Fig. 8 for ann56 lattice with boundaries
fixed at (SL50,SR50). Two global quantities of the spin
chain are plotted: the mixedness of the state, 12Tr@r2#, and
the entanglement. The entanglement over the multipa
mixed stater is calculated by averaging the pairwise tang
t i j over all spin pairs (i , j ). The tangle@26# is a monotonic
function on pure or mixed states of two qubits assuming
value 0 for separable states and 1 for maximally entang
Bell states. It is defined as a function of the reduced stater i j
of qubits i and j: t i j 5@max$l12l22l32l4%#

2, wherelk are
the square roots of the eigenvalues, in decreasing orde
r i j r̃ i j . Here, r̃ i j is the spin-flipped version ofr i j : r̃ i j 5sy

^ syr12* sy^ sy .
As the amount of coupling to the environment, quantifi

by p, increases, the amount of entanglement in the spin c
increases. Additionally, beyond a certain time, the mixedn
decreases with increasing coupling. This latter fact is
cause rule 110 acts as a neighborhood dependent Ampl
damping channel that decreases the reduced entropy of
spin state. In fact, forp51 the state of the system relaxe
after a timet54 to dynamics with period 6 and consta
mixedness. For the mixed rule case,p51/2, in contrast, the
system is not driven to periodic evolution but on long-tim
scales experiences small fluctuation in mixedness and
tanglement.

The development of entanglement during open system
namics, absent in the closed system dynamics can be a
uted to the fact that the nonunitary rule acts to dampen

1Becausesx¹ SU~2!, rule 108 is not strictly within the class o
implementable BQCA rules in 1D. However, one can use the
M (1,1,1,ei (p/2)sx) instead and correct for the phase using a c
trolled phase gate in the nonunitary implementation stage.
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state of a qubit only if the neighborhood is in the stateu01&.
The implementation of this rule requires a three-body int
action followed by single-spin decoherence. The net effec
to project the state to one that has some fraction of entan
ment. This is an example of environment assisted entan
ment preparation. Another, well-known, example of such
phenomenon is the relaxation of two independent radia
dipoles into a maximally entangled subradiant state@27#
when the dipoles are close enough together to see the s
electromagnetic field. The results here show that entan
ment can develop even when the environment acts only
one member of a neighborhood of spins.

It is possible that this effect could be measured in
laboratory as a signature of neighbor dependent environm
tal coupling. For instance, consider an array of three ato
of two speciesA andB trapped inside a high-Q cavity with
orderABA and aligned perpendicular to the cavity axis. T
species are assumed to have a distinguishable set of
ground-state manifoldsu0&A,B andu1&A,B with different reso-
nant excitation frequencies\v0 A(B)5EeA(B)2E0A(B) and
\v1A(B)5EeA(B)2E1A(B) and possibly different decay rate
gA,B . If a laser field at frequencyvL illuminates all three
atoms, dipoles will be excited with dominant dipole-dipo
interactionsVdd acting pairwise. Assume thatvL is ex-
tremely far-off resonant to theu0&A,B→ue&A,B transition so
that dipoles are excited only when atoms of both species
in stateu1&. The interactions will shift the energy levels o
the two species so that the effective detunings of the fi
will be DB.vL2v1 B22Vdd /\ and DA.vL2v1 A
2Vdd /\. For Vdd large enough and appropriate choice
laser frequency,uDBu<gB while uDAu.gA so that the field is
in resonance with the excited state of atomB but not for the
A species. If the resonant-cavity frequency is close tov0B ,
then theB species atom will preferentially decay to sta
u0&B . This type of decay corresponds to the nonunitary r
S5sx

BSB
11(sx

Brsx
B ,p)sx

B , in analogy to Eq. ~24!. The
strength ofVdd will determine the amount of couplingp.

VI. CONCLUSIONS

In this paper, we have shown how to construct a univer
class of radius-1, two-state QCA that are block partition

le
-
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and particularly suited for implementation in systems with
naturally endowed lattice-type structure. In Sec. II A we
troduced a universal set of BQCA rules in Eq.~1!, which is
the formal analog of the subset of 16 unitary rules of W
fram’s 256 radius-one rules for classical CA. We demo
strated how these general rules can be simulated in a
lattice with Ising interactions in conjunction with single
qubit rotations~applied in parallel across the lattice!. This is
an important result showing the physical relevance of
BQCA to experimental systems.

Another important result is that we have suggested
alternative approach to quantum computation: use BQCA
explore the raw computational properties of a physical s
tem, such as the transport of quantum information and
generation of long-range quantum correlations through
the system. This approach should be viewed as complem
tary to the standard treatment of quantum-information p
cessing centered around the quantum circuit model of QC
Sec. III we presented several specific examples of h
BQCA rules can be chosen to distribute specialized
tangled states across the lattice, for example, to creat
n-spin GHZ state, shown in Fig. 3~b!. In order to visualize
the development and spread of entanglement, we have in
duced the idea of plotting a space-time diagram of the
duced entropy at each cell. We then explored more gen
entanglement dynamics in Sec. IV, with a focus on find
rules that are effective at generating multiqubit entang
ment. For this task, we utilized the multiqubit entanglem
measureR(uc&) related to the average purity of the constit
ent qubits.

Perhaps our most innovative contribution to the study
QCA is that we have developed the formalism in Sec. V t
extends BQCA to open quantum systems, which evolve
cording tononunitary rules. The BQCA rule is represente
by an appropriate set of Krauss operators acting on the
tem density matrix. This more generalized treatment can
thought of as including the effect of correlated noise in
quantum evolution. From a practical standpoint, this ext
sion is important for exploring the effect of a broader class
errors than is typically treated in the theory of error corre
on
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tion. On a more fundamental level, the nonunitary BQC
can be used as a test bed for exploring the interplay betw
quantum and classical computation—between quantum
classical correlations in a discrete dynamical system. A
concrete example exploring this notion, in Sec. V we p
sented simulation results of a nonunitary BQCA rule that c
be tuned continuously from a purely open irreversible e
lution using rule 110~implemented in a block partitioned
manner! to a purely closed unitary evolution using the qua
tum analog of rule 108. Remarkably, we uncovered the
triguing result that for a particular initial-state entangleme
generation is optimized by tuning the mixing parameter t
finite value, which suggests the possibility of environme
assisted entanglement generation.

The are several outstanding issues regarding QCA
warrant future research. Can QCA be used to simulate c
plex classical or quantum dynamics? The study of QLG
gorithms demonstrates that there are nontrivial classical
namics of a single particle which can be studied using
lattice of spins. In these algorithms, the entanglement ge
ated is typically limited to local neighborhoods. It is worth
while investigating whether large scale global entanglem
generated by QCA can be used to advantage, perhap
study properties of classical CA with quantum parallelis
Also the preliminary study of nonunitary QCA here sugge
that in some cases open system dynamics may be a m
efficient way to navigate through Hilbert space than pur
unitary dynamics. For practical implementation one wond
how resilient QCA are to decoherence and noise in the c
trol fields. Work on decoherence free subspaces~DFS! shows
that when a group of quantum systems see the same env
ment that the noise can protected against by careful enco
of the states@28#. Because cellular automata evolve by use
global control fields the requirements for DFS are natura
this architecture.
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